Interior Penalty Finite Element Approximation of Navier-stokes Equations and Application to Free Surface Flows
نویسنده
چکیده
In the present work, we investigate mathematical and numerical aspects of interior penalty finite element methods for free surface flows. We consider the incompressible Navier-Stokes equations with variable density and viscosity, combined with a front capturing model using the level set method. We formulate interior penalty finite element methods for both the Navier-Stokes equations and the level set advection equation. For the two-fluid Stokes equations, we propose and analyze an unfitted finite element scheme with interior penalty. Optimal a priori error estimates for the velocity and the pressure are proved in the energy norm. A preconditioning strategy with adaptive reuse of incomplete factorizations as preconditioners for Krylov subspace methods is introduced and applied for solving the linear systems. Different and complementary solutions for reducing the matrix assembly time and the memory consumption are proposed and tested, each of which is applicable in general in the context of either multiphase flow or interior penalty stabilization. As level set reinitialization method, we apply a combination of the interface local projection and a fast marching scheme. We provide for the latter a reformulation of the distance computation algorithm on unstructured simplicial meshes in any spatial dimension, allowing for both an efficient implementation and geometric insight. We present and discuss numerical solutions of reference problems for the one-fluid NavierStokes equations and for the level set advection problem. Solutions of benchmark problems in two and three dimensions involving one or two fluids are then approximated, and the results are compared to literature values. Finally, we describe software design techniques and abstractions for the efficient and general implementation of the applied methods.
منابع مشابه
Symmetric Interior Penalty Dg Methods for the Compressible Navier–stokes Equations I: Method Formulation
In this article we consider the development of discontinuous Galerkin finite element methods for the numerical approximation of the compressible Navier–Stokes equations. For the discretization of the leading order terms, we propose employing the generalization of the symmetric version of the interior penalty method, originally developed for the numerical approximation of linear self-adjoint sec...
متن کاملSymmetric Interior Penalty Dg Methods for the Compressible Navier–stokes Equations Ii: Goal–oriented a Posteriori Error Estimation
In this article we consider the application of the generalization of the symmetric version of the interior penalty discontinuous Galerkin finite element method to the numerical approximation of the compressible Navier– Stokes equations. In particular, we consider the a posteriori error analysis and adaptive mesh design for the underlying discretization method. Indeed, by employing a duality arg...
متن کاملOptimal error estimate of the penalty finite element method for the time-dependent Navier-Stokes equations
A fully discrete penalty finite element method is presented for the two-dimensional time-dependent Navier-Stokes equations. The time discretization of the penalty Navier-Stokes equations is based on the backward Euler scheme; the spatial discretization of the time discretized penalty Navier-Stokes equations is based on a finite element space pair (Xh,Mh) which satisfies some approximate assumpt...
متن کاملFinite Element Analysis of Incompressible Viscous Flows by the Penalty Function Formulation
A review of recent work and new developments are presented for the penalty-function, finite element formulation of incompressible viscous flows. Basic features of the penalty method are described in the context of the steady and unsteady Navier-Stokes equations. Galerkin and “upwind” treatments of convection terms are discussed. Numerical results indicate the versatility and effectiveness of th...
متن کاملAn optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations
In this article we propose a new symmetric version of the interior penalty discontinuous Galerkin finite element method for the numerical approximation of the compressible Navier-Stokes equations. Here, particular emphasis is devoted to the construction of an optimal numerical method for the evaluation of certain target functionals of practical interest, such as the lift and drag coefficients o...
متن کامل